DESMI Guidelines
For pump installations

PROVEN TECHNOLOGY
Congratulations on your new DESMI pump. We are proud that you chose us as your pump supplier, and will do our utmost to meet your expectations.

You are always welcome to contact us at desmi@desmi.com or +45 96 32 81 11 should you have any questions concerning your pump or anything else.

Remember that DESMI supplies pumps for installations of all sizes.

<table>
<thead>
<tr>
<th>Table of contents</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Optimum pump installation</td>
<td>3</td>
</tr>
<tr>
<td>Before startup</td>
<td>4</td>
</tr>
<tr>
<td>Recommended design of pipes on suction side</td>
<td>5</td>
</tr>
<tr>
<td>Allowable vibration levels on DESMi centrifugal pumps & motors</td>
<td>6</td>
</tr>
<tr>
<td>Service areas for horizontal and vertical pumps</td>
<td>7</td>
</tr>
<tr>
<td>Running pumps with a frequency converter</td>
<td>8</td>
</tr>
<tr>
<td>Insulation</td>
<td>10</td>
</tr>
<tr>
<td>DESMI Spare Parts Kits</td>
<td>11</td>
</tr>
</tbody>
</table>

This brochure contains a number of recommendations for pump installation with DESMI centrifugal pumps concerning mechanical and electrical aspects.

For details on operation and maintenance, please refer to the pump manual for the relevant pump at www.desmi.com
For final design and installation of pumps supplied by DESMI, use DS information DS/CEN/TR 13930 (recommendations for installing pipe systems) and 13932 (recommendations for installing pumps) as guidelines.

Key elements of pump installation:

- Base plate
- Pipe system
- Pipe support
- Ventilation for installation
- Service areas and lifting points for motor and pump
- Pump medium flow
- Optimum operating range
- Electrical connections (cables and screw assemblies)
- Electrical interference
- Using Common Mode filter for minimising bearing currents

Horizontal pump

Avoid 90-degree bends, T-pieces or other components that can impede flow on the pump pressure side. Gentle curves or Y-pieces to ensure optimum flow after the pump are best.

Pipe support to bear load from the pump flanges. Permitted flange forces are specified in the pump manual. Permitted flange forces can be increased by fitting flange reinforcement.

Pipe system before pump

DS13930/13932 recommends length of suction pipe “X” before the pump is around 5 x pipe diameter. For a DN100 pump, this will be equivalent to X= 500 mm. This rule of thumb ensures laminar flow before and after the pump that will give optimum operating conditions. But in practice, there are many good installations where this has not been fulfilled.
Optimum pump installation

Vertical pump

- Avoid 90-degree bends, T-pieces or other components that can impede flow on the pump pressure side. Gentle curves or Y-pieces to ensure optimum flow after the pump are best.

- Use shims between pump base plate and concrete plinth or base plate and avoid tension in the pump foot when the installation is secured.

- A solid base plate will minimise vibrations and extend service intervals.

X = minimum length of suction pipe before flow-changing components

Flow-changing components:
- Compensators
- Valves
- Filters
- Bends
- Orifice plate
- Etc.

Before startup

1. Check that the pump can rotate by turning it by hand
2. Check alignment of pipe system
3. Check bearings are lubricated before startup or no later than immediately afterwards
4. Check that the pump is filled with the correct medium and bled
5. Check that the pump rotates in the correct direction and has no abnormal noises or vibrations
6. Check differential pressure (discharge pressure - suction pressure) and compare with calculated operating point for the installation

If differential pressure is too high or too low, the pump may be damaged or have impeded efficiency. High flow must be reduced either by reducing RPM or constricting the discharge valve or installing an orifice plate on the discharge side. Alternatively, change the pump hole diameter - contact DESMI.
Recommended design of pipes on suction side

Good installation

Poor installation

- **REQUIRED SUCTION PIPING DESIGN**
- **NOT ALLOWED SUCTION PIPING DESIGN**
- Good installation
- Poor installation
-

- AIR POCKET
- D should be bigger or equal to pump suction flange DN
- Full flow valve
- Valve placed too close to pump

- MAX 20°
As standard DESMI centrifugal pumps with electric motor generate less than 2.8 mm/s vibration velocity (measured in 3 directions at motor flange level on vertical pumps) during a factory test.

The pump and electric motor industry generally agrees that vibration levels above 7 mm/s are damaging – i.e. this will result in shorter lifetimes of e.g. bearings and/or shaft seals in pumps (and bearings in motors) than normally expected. This agrees with the recommendations in the international standard ISO 10816-3.

But in pump installations on ships external excited vibrations from main engine and/or auxiliary machinery are transferred from ship hull to the pump often resulting in much higher vibration velocities than 7 mm/s.

DESMI recommends the following values for protective settings:

<table>
<thead>
<tr>
<th>Location</th>
<th>Vibration alarm level (mm/s)</th>
<th>Vibration trip level (mm/s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pump</td>
<td>>7</td>
<td>>10</td>
</tr>
<tr>
<td>Motor (drive end)</td>
<td>>7</td>
<td>>10</td>
</tr>
<tr>
<td>Motor (non drive end)</td>
<td>>10</td>
<td>>15</td>
</tr>
</tbody>
</table>

ISO 10816-3 Vibration Severity Chart

- **D** Vibration causes damage
- **C** Short term operation allowable
- **B** Unlimited long-term operation allowable
- **A** New machine condition

VELOCITY
- 10-1000 Hz > 600 rpm
- 2-1000 Hz > 120 rpm

Rigid
- Pumps > 15 kW radial, axial, mixed flow
- Machines 15 kW < P < 300 kW
 medium sized machines 15kW < P < 300kW
- Motors 160 mm ≤ H ≤ 315 mm
 large machines 300kW < P < 50 MW
- Motors 315 mm ≤ H

Flexible
- Rigid Flexible Rigid Flexible Rigid Flexible Rigid Flexible Foundation
Service areas for horizontal and vertical pumps

To facilitate future servicing of pump and electric motor, lifting gear should be installed, such as access for cranes, lifting points, ceiling beams or other approved equipment for the purpose.

Carefully consider where the pump installation will be placed, as transportable approved lifting gear often needs considerable space.

* If there is no permanently-installed lifting gear, an approved lifting beam is required.

Approved lifting beam

The beam must be able to take the total weight of pump and electric motor (see weights in pump manual)

Min. distance for pump service (see pump manual or contact DESMI)

Rails for sliding and fixing the electric motor on during service

Approved lifting beam

Individual lifting height for the installations - see pump manuals or contact DESMI

Service area in front of motor bracket opening

*Note: Some pumps have a service area underneath
When a pump installation includes a frequency converter with the primary purpose of being able to regulate electric motor and thus pump RPM, the frequency converter can tend to generate very high current peaks. Failure to take this into account when designing the overall installation can cause damage, including bearing currents that can damage the motor’s bearings very quickly. To avoid such problems and damage, DESMI has a number of recommendations that can minimise the risk of bearing currents and eliminate the destructive effect of the same if they occur.

Electric installation
DESMI recommends using screened EMC cables and EMC screw assemblies to avoid electrical interferences, and the installation must be correctly potential equalised. It is important that any paint residue etc. on screw assemblies in terminal boxes on motor and frequency converter is removed to achieve good electrical connection.

Depending on motor size and IE classification, DESMI recommends installing a Common Mode filter, the function of which is to reduce common mode current peaks between the frequency converter and motor. The larger the motor and IE classification, the greater the risk of bearing currents damaging the motor bearings. Alternatively, if the person responsible for installation can confirm (via measurement) that no bearing currents occur, a Common Mode filter can be avoided.

The length of motor cables also influences filter size and type that should be used.

Mechanical installation
A Common Mode filter will reduce but cannot eliminate current peaking, and depending on how correctly electrical installation has been performed (Common Mode filter, screened cables, potential equalisation etc.) bearing currents can still occur. The destructive effect on the motor of such currents can be strongly reduced by using insulated bearings or hybrid (ceramic) bearings in the motor. DESMI’s recommendations in relation to use of these are also given in the table. An electric motor with ceramic bearings is more expensive than the same motor type with standard or insulated bearings. The advantage of using ceramic bearings is that the insulating effect is greater than for standard insulated bearings and that the overall lifetime of ceramic bearings is significantly longer.
DESMI as pump supplier (with electric motor) and frequency converter

DESMI works closely with most manufacturers of electric motors and frequency converters, and therefore recommends the full package. In such situations, DESMI will provide consultancy to ensure all aspects concerning bearing currents etc. are taken into account. If the order also includes starting the pump, the installation will also be checked and approved.

DESMI as pump supplier (with electric motor)
In other situations, DESMI will only supply the pump with a motor, and our customers provide frequency converter and electrical installation. In such situations, we have less influence on installation as a whole and advise that our recommendations are followed. We naturally provide consultancy to the extent a customer requires it.

For more information on Common Mode filters and other anti-interference filters, such as Sinus and dU/dt filters, DESMI is happy to provide general input and consultancy. For more detailed information on the various products, we refer to our suppliers of frequency converters.

"Interference" passed to the grid from frequency converters.
Apart from generating interference for motors and pump installations, frequency converters are also known to generate interference towards the electricity grid - and depending on converter size, the electricity provider can specify that such interference is limited. DESMI Automation can measure and provide solutions for such situations.

DESMI's recommendations concerning use of Common Mode filters and insulated bearings

<table>
<thead>
<tr>
<th>Motor size [M]</th>
<th>Motor IE class</th>
<th>Insulated bearings</th>
<th>Common Mode filter</th>
<th>Insulated bearings</th>
<th>Common Mode filter</th>
<th>Insulated bearings</th>
<th>Common Mode filter</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>IE2</td>
<td></td>
<td></td>
<td>IE3</td>
<td></td>
<td>IE4</td>
<td></td>
</tr>
<tr>
<td>M ≤ 4 kW</td>
<td>No</td>
<td>No / Yes</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>Yes</td>
<td></td>
</tr>
<tr>
<td>5.5 kW ≤ M ≤ 30 kW</td>
<td>No</td>
<td>Yes</td>
<td>No / Yes</td>
<td>Yes</td>
<td>No / Yes</td>
<td>Yes</td>
<td></td>
</tr>
<tr>
<td>37 kW ≤ M ≤ 55 kW</td>
<td>No / Yes</td>
<td>Yes</td>
<td>No / Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td></td>
</tr>
<tr>
<td>75 kW ≤ M</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td></td>
</tr>
</tbody>
</table>

(The recommendations in the table are based on experience and input from the various suppliers of electric motors and frequency converters)
Insulation

Pumps supplied by DESMI cannot generally be insulated for heat except at the top of the pump housing - i.e. up to the base flange on the motor bracket as shown on the diagram below. No holes or screen openings on the motor bracket can be covered by insulation.

An electric motor will become hotter if mounted on a fully insulated pump. The ball bearings and/or coils in the motor can overheat if a pump is insulated all the way up to the motor flange.

Unrestricted ventilation of the motor bracket is therefore necessary to provide sufficient cooling of pump and motor bearings - in pumps with bearings (A02 version) and without (A12 version).
DESMI original Spare Parts Kits

DESMI original spare parts kits - for simple inspection and service

DESMI supplies spare parts kits for simple, easy pump inspection and maintenance.

We supply a wide range of spare parts kits for a large part of our DESMI pumps.

To find the spare parts kit for your needs - and to provide the best possible service, we need the following details:

- **Pump type (e.g. NSL 150-265)**
- **Serial number (e.g. 323249 or 30192-1)**

Please send any enquiries to desmi@desmi.com or contact us on +45 96 32 81 11.

Spare parts kits contain:

- Mechanical shaft seal
- Special tools
- Bearings
- O-rings
- Seals
- Nuts and washers
- Parts list
- Etc.

Scan the QR code for easy access to our overhaul videos, manuals, spare parts kits etc., or go to www.desmi.com/aftersales

- Spare parts kits list
- Manuals
- Overhaul videos
- Request spare parts kits
- Contacts
- Etc.

Original spare parts kits for a wide range of pump types at www.desmi.com/aftersales.aspx